Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data

نویسندگان

  • Matthew S. Colgan
  • Claire A. Baldeck
  • Jean-Baptiste Feret
  • Gregory Asner
چکیده

Mapping the spatial distribution of plant species in savannas provides insight into the roles of competition, fire, herbivory, soils and climate in maintaining the biodiversity of these ecosystems. This study focuses on the challenges facing large-scale species mapping using a fusion of Light Detection and Ranging (LiDAR) and hyperspectral imagery. Here we build upon previous work on airborne species detection by using a two-stage support vector machine (SVM) classifier to first predict species from hyperspectral data at the pixel scale. Tree crowns are segmented from the lidar imagery such that crown-level information, such as maximum tree height, can then be combined with the pixel-level species probabilities to predict the species of each tree. An overall prediction accuracy of 76% was achieved for 15 species. We also show that bidirectional reflectance distribution (BRDF) effects caused by anisotropic scattering properties of savanna vegetation can result in flight line artifacts evident in species probability maps, yet these can be largely mitigated by applying a semi-empirical BRDF model to the hyperspectral data. We find that confronting these three challenges—reflectance anisotropy, integration of pixeland crown-level data, and crown delineation over large areas—enables species mapping at ecosystem scales for monitoring biodiversity and ecosystem function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of atmospheric correction and image filtering on hyperspectral classification of tree species using support vector machine

Hyperspectral images can be used to identify savannah tree species at the landscape scale, which is a key step in measuring biomass and carbon, and tracking changes in species distributions, including invasive species, in these ecosystems. Before automated species mapping can be performed, image processing and atmospheric correction is often performed, which can potentially affect the performan...

متن کامل

Feature-based Tree Species Classification Using Hyperspectral and Lidar Data in the Bavarian Forest National Park

The Bavarian Forest National Park, established in 1970, is a unique area of forests with large nonintervention zones, which promote a large-scale rewilding process with low human interference. Thus, the National Park authority is particularly interested in investigating the structure and dynamics of the forest ecosystems within the park. However, conventional forest inventories are timeconsumin...

متن کامل

Semi-Supervised Methods to Identify Individual Crowns of Lowland Tropical Canopy Species Using Imaging Spectroscopy and LiDAR

Our objective is to identify and map individuals of nine tree species in a Hawaiian lowland tropical forest by comparing the performance of a variety of semi-supervised classifiers. A method was adapted to process hyperspectral imagery, LiDAR intensity variables, and LiDAR-derived canopy height and use them to assess the identification accuracy. We found that semi-supervised Support Vector Mach...

متن کامل

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data

Accurate classification of tree-species is essential for sustainably managing forest resources and effectively monitoring species diversity. In this study, we used simultaneously acquired hyperspectral and LiDAR data from LiCHy (Hyperspectral, LiDAR and CCD) airborne system to classify tree-species in subtropical forests of southeast China. First, each individual tree crown was extracted using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012